Cientista de Dados: a profissão do futuro

Atualmente, o cientista de dados é um dos profissionais mais requisitados no mercado de trabalho. Uma pesquisa feita pela Michael Page, líder mundial em recrutamento de executivos, aponta que os gestores de negócios em Business Intelligence e Big Data, juntamente com os cientistas de dados, serão os especialistas mais procurados no segmento de Tecnologia da Informação nos próximos dois anos, com salários variando entre R$ 12 mil e R$ 30 mil.

A procura crescente por esse especialista deve-se em parte pela grande popularidade que a subárea da Inteligência Artificial, chamada de Aprendizagem de Máquina (Machine Learning em inglês), ganhou nos últimos anos. Uma pesquisa feita pela MIT Technology Review e pela Google Cloud, publicada em março de 2017, indica que 26% das empresas entrevistadas planejam alocar mais de 15% do seu orçamento no setor.

Associado a isso, como a área de Big Data está em foco na indústria de tecnologia, Machine Learning tornou-se essencial por permitir que se façam previsões com base em grandes volumes de dados.

Dentre os exemplos mais comuns de Machine Learning estão: os algoritmos da Netflix que fazem sugestões de filmes de acordo com as preferências do espectador, os algoritmos da Amazon que recomendam livros com base nas últimas compras do usuário e os algoritmos adotados pelo Facebook que analisam atualizações de status para definir o conteúdo do seu feed.

O cientista de dados deve aplicar princípios, processos e técnicas para criar soluções inteligentes para problemas de negócios por meio da análise automática de informações. Para tanto, é preciso possuir sólidos conhecimentos em:

● Machine Learning: é uma subárea da Inteligência Artificial baseada em algoritmos matemáticos e sua automação, permitindo que uma máquina aprenda e/ou aperfeiçoe o seu desempenho em alguma tarefa. Os principais algoritmos envolvidos no processo são: árvore de decisão, redes neurais artificiais, técnicas de agrupamento e associação de dados, regressão linear e regressão logística.

● Sistemas de programação como Python, R, Scala ou o conhecimento de linguagens de consulta e tecnologias associadas como SQL, MySQL, PostgreSQL, Cassandra, MongoDB são fundamentais. Além disso, é importante saber trabalhar com bibliotecas e ferramentas de Machine Learning, tais como RapidMiner, TensorFlow, Power BI e Anaconda. Para o Big Data é essencial ter familiaridade com o Hadoop, MapReduce, Spark, Pig e Hive, por exemplo.

● Visualização: o foco aqui é o Visual Analytics, ou seja, a representação apropriada de dados complexos por meio de imagens e gráficos para facilitar o desenvolvimento de análises. É importante conhecer algumas das ferramentas como D3, Tableau e Qlikview.

1 Comment Found

LEAVE A COMMENT


Fatal error: Call to undefined function blanaceTags() in /home/bidobrasil/www/wp-content/themes/studentwp/includes/library/functions.php on line 569